Assessing future rainfall projections using multiple GCMs and a multi-site stochastic downscaling model

نویسندگان

  • R. Mehrotra
  • Ashish Sharma
  • Nagesh Kumar
  • Ana P. Barros
چکیده

0022-1694/$ see front matter Crown Copyright 2 http://dx.doi.org/10.1016/j.jhydrol.2013.02.046 ⇑ Corresponding author. Tel.: +61 293855140; fax: E-mail addresses: [email protected] (R. edu.au (A. Sharma), [email protected] (D. Nage iisc.ernet.in (T.V. Reshmidevi). Impact of global warming on daily rainfall is examined using atmospheric variables from five General Circulation Models (GCMs) and a stochastic downscaling model. Daily rainfall at eleven raingauges over Malaprabha catchment of India and National Center for Environmental Prediction (NCEP) reanalysis data at grid points over the catchment for a continuous time period 1971–2000 (current climate) are used to calibrate the downscaling model. The downscaled rainfall simulations obtained using GCM atmospheric variables corresponding to the IPCC-SRES (Intergovernmental Panel for Climate Change – Special Report on Emission Scenarios) A2 emission scenario for the same period are used to validate the results. Following this, future downscaled rainfall projections are constructed and examined for two 20 year time slices viz. 2055 (i.e. 2046–2065) and 2090 (i.e. 2081–2100). The model results show reasonable skill in simulating the rainfall over the study region for the current climate. The downscaled rainfall projections indicate no significant changes in the rainfall regime in this catchment in the future. More specifically, 2% decrease by 2055 and 5% decrease by 2090 in monsoon (JJAS) rainfall compared to the current climate (1971–2000) under global warming conditions are noticed. Also, pre-monsoon (JFMAM) and postmonsoon (OND) rainfall is projected to increase respectively, by 2% in 2055 and 6% in 2090 and, 2% in 2055 and 12% in 2090, over the region. On annual basis slight decreases of 1% and 2% are noted for 2055 and 2090, respectively. Crown Copyright 2013 Published by Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical downscaling of precipitation

Papers published in Hydrology and Earth System Sciences Discussions are under open-access review for the journal Hydrology and Earth System Sciences Abstract Global Circulation Models (GCMs) are a major tool used for future projections of climate change using different emission scenarios. However, for assessing the hydrological impacts of climate change at the watershed and the regional scale, ...

متن کامل

Climate change impact assessment: Uncertainty modeling with imprecise probability

[1] Hydrologic impacts of climate change are usually assessed by downscaling the General Circulation Model (GCM) output of large-scale climate variables to local-scale hydrologic variables. Such an assessment is characterized by uncertainty resulting from the ensembles of projections generated with multiple GCMs, which is known as intermodel or GCM uncertainty. Ensemble averaging with the assig...

متن کامل

Assessing Severe Drought and Wet Events over India in a Future Climate Using a Nested Bias-Correction Approach

General circulation models (GCMs) are routinely used to simulate future climatic conditions. However, rainfall outputs from GCMs are highly uncertain in preserving temporal correlations, frequencies, and intensity distributions, which limits their direct application for downscaling and hydrological modeling studies. To address these limitations, raw outputs of GCMs or regional climate models ar...

متن کامل

Assessing Hydrological Impacts of Climate Change: Modeling Techniques and Challenges

Climate Change refers to any systematic change in the long-term statistics of climate elements (such as temperature, pressure, or winds) sustained over several decades or longer time periods. General Circulation Models (GCMs) are tools designed to simulate time series of climate variables globally, accounting for effects of greenhouse gases in the atmosphere and resulting global climate change....

متن کامل

Selecting CMIP5 GCMs for downscaling over multiple regions

captures the maximum possible range of changes in surface temperature and precipitation for three continental-scale regions. We find that, of the CMIP5 GCMs with 6-hourly fields available, three simulate the key regional aspects of climate sufficiently poorly that we consider the projections from those models ‘implausible’ (MIROC-ESM, MIROCESM-CHEM, and IPSL-CM5B-LR). From the remaining models,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013